Nominal Presentation of Cubical Sets Models of Type Theory

نویسنده

  • Andrew M. Pitts
چکیده

The cubical sets model of Homotopy Type Theory introduced by Bezem, Coquand and Huber [2] uses a particular category of presheaves. We show that this presheaf category is equivalent to a category of sets equipped with an action of a monoid of name substitutions for which a finite support property holds. That category is in turn isomorphic to a category of nominal sets [15] equipped with operations for substituting constants 0 and 1 for names. This formulation of cubical sets brings out the potentially useful connection that exists between the homotopical notion of path and the nominal sets notion of name abstraction. The formulation in terms of actions of monoids of name substitutions also encompasses a variant category of cubical sets with diagonals, equivalent to presheaves on Grothendieck’s “smallest test category” [8, pp 47–48]. We show that this category has the pleasant property that path objects given by name abstraction are exponentials with respect to an interval object. 1998 ACM Subject Classification F.4.1 Mathematical Logic; D.3.3 Language Constructs and Features

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets

Staton has shown that there is an equivalence between the category of presheaves on (the opposite of) finite sets and partial bijections and the category of nominal restriction sets: see [2, Exercise 9.7]. The aim here is to see that this extends to an equivalence between the category of cubical sets introduced in [1] and a category of nominal sets equipped with a ‘01-substitution’ operation. I...

متن کامل

Nominal Presentations of the Cubical Sets Model of Type Theory

The cubical sets model of Homotopy Type Theory was introduced by Bezem, Coquand and Huber using a particular category of presheaves. We show that this category is equivalent to a category of sets whose elements have a finite support property with respect to an action of a monoid of name substitutions; and that this is isomorphic to a category of nominal sets equipped with source and target maps...

متن کامل

A Note on the Uniform Kan Condition in Nominal Cubical Sets

Bezem, Coquand, and Huber have recently given a constructively valid model of higher type theory in a category of nominal cubical sets satisfying a novel condition, called the uniform Kan condition (UKC), which generalizes the standard cubical Kan condition (as considered by, for example, Williamson in his survey of combinatorial homotopy theory) to admit phantom “additional” dimensions in open...

متن کامل

Cubical sets and the topological topos

Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions: 1. Johnstone’s topological topos was created to present the geometric realization of simplicial se...

متن کامل

Cubical Sets as a Classifying Topos∗

Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014